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1. Introduction

Chest radiography (CXR) image is usually required for lung severity
assessment.However,chestX-raysinCOVID-19interpretation is required
expertradiologists'knowledge.This studyaims to improvethe COVID-19
X-ray image classificationusing feature selection technique by the
regressionmutual informationdeep convolution neuron networks (RMI
Deep-CNNs). The dataset consists of 219 COVID-19, 500 viral
pneumonias, and 500 normal chest X-rav images. CXR images were
comprehensivelypre-trainedusingDCNNs to extract the verylarge image
features,then, the featureselectioncouldreducethe complexityof a model
and reduce the model overfitting. Therefore, the critical features were
selected using regression mutual information followed by the fully
connectedwith softmax layer for classification. For the classificationof
two alternativesystems,thesenetworkswerecompared(ResNet152V2and
InceptionV3). The classificationperformance for both schemes were
92.21%, 100%, 90% and 91.39%, 100%, 82.50%, respectively. In
addition,RMI Deep-CNNsnot onlyimprovethe accuracybut alsoreduce
trainable features by over 80%. This. approach tends to significantly
improve the computation time and model accuracy for COVID-19
classification.

While radiographic pictures (typical CXR) can aid in the early detection of suspected instances [1],
[2], they can diagnose with other infectious and inflammatory lung illnesses [3]-[6]. As a result,
radiologists find it challenging to differentiate COVID19 from other viral pneumonias. With regard to
extracting features from chest X-rays, Deep Convolutional Neural Networks (DCNNs) have been
effective. However, DCNNs have numerous drawbacks, including a lack .of available datasets and a
lengthy processing time. To diagnose pneumonia, Vikash et al. [7] presented the idea of transfer learning
framework. A better form of the convolutional neural network (CNN), for instance, is the residual neural
network (ResNet) model, which prevents distortion as the network becomes deeper and more
complicated [8]. Convolutional neural network models have several layers [9], [10].

The numerous pre-trained models have evolved as a result of the pre-trained. For the identification
of lung regions and the classification of various forms of pneumonia, Xianghong et al. [11] suggested
the VGG16 model. COVIDNet was developed by Linda et al. [12] to detect COVID19 instances with

• https:!!doi.org!10.26555!ijain.v8i2.809 ehttp://ijain.orgeijain@uad.ac.id
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an accuracy of 83.5%. Ayrton [13] reported a validation accuracyof96.2 percent using a short dataset of
339 photos based on ResNetSO. The transfer learning approach has been used well in earlier works,
although it still involves lots of convolution and maximum pooling processes. To avoid the limitation of
complex pre-trained model, this study proposed regression mutual information (RMI) that measure the
relationship between features and target class. The general mutual information (MI) is a theoretical
metric that can be used to depict relationships between variables, even when those relationships are very
non-linear and concealed by highly dimensional data. It is independent of any classifiers. The one with
a higher MI between features and target class is more suitable for the classification tasks. Studies on
applying MI to enhance DL networks are currently expanding [14]-[18].

When PCR tests suffer some limitations [19], [20], CXR and CT are necessary and readily available
even in rather distant areas.A few studies have reported rather promising results for the diagnosis based
on CXR imaging [21], [22]. Convolutional neural networks (CNN) architectures for the diagnosis of
COVID-19 have proposed by Narin et al. [12]. They demonstrated that a pre-trained ResNetSOmodel
achieved an accuracy of 98%. When it was challenging to discriminate between typical pneumonia and
COVID-19, Wang etal. [23] created COVID-Net to identify CXR images ofCOVID-19 patients among
patients with viral infections, bacterial infections, and healthy individuals. Although a tiny sample size
was employed, and no information regarding the method's dependability was provided, COVID-Net
managed to attain a PPV of 88.9% and a sensitivity of 80%. Biraja G., et al. [21] used the Bayesian
technique to CXR-based COVID-19 diagnosis in order to employ uncertainty estimation with intriguing
findings. Nevertheless, the samples are insufficient for statistical variability. Our method adds extra
COVID-19 samples to existing datasets, followed by a discriminating Normal, Viral pneumonia, and
COVID-19, and fmally feature selection using regression mutual information. This approach addresses
the drawbacks of state-of-the-art methodologies.

Due to the complexity of the general MI, the search technique for adding or removing any feature
based on high scores or low scores is often sophisticated. Entropy decreases are measured by mutual
information when the target value is present. Mutual information estimators rely on smoothing
parameters, the feature selection greedy approach lacks a theoretically supported stopping condition, and
the estimation itself is hampered by the estimation's extremely high dimensionality. To address this
problem, Regression Mutual Information (RMI) was proposed. In this study, the processes are
summarized as follows: First, the experiments show that the transfer learning from ImageNet could be
used with other domains with the fine-tuning approach. Fine-tuning is a common technique in transfer
learning to perform image classification and recognize classes that they were never trained on when using
pre-trained model. Second, the proposed method is an effectivemodel still maintains a high performance
when using regression mutual information scheme.

2. Method

2.1. Datasets

The experiment datasets are made up of 219 COVID-19 chest X-ray pictures that were downloaded
from Dr. Joseph Cohen's open-source GitHub repository [23]. Additionally, 500 photographs of viral
pneumonias and 500 images of normal chest X-rays were chosen from the Kaggle repository "Chest X
Ray Images (Pneumonia)" [24]. Based on previously trained models, all photos in this dataset were scaled
to 224x224 and 299x299 pixels. Representative chest X-ray pictures of healthy people, people with viral
pneumonia, and those with COVI::;D=-:::1::9:ar=e::;si:ihoc:wilmn:niin:=:iiF:ii_.•1. _

Yampaka et al. (Feature selectionusing regressionmutual information deepconvolution neuron networksfor .. .)
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(a) (b) (c)

Fig.1. CXR imageswith differececlass(a) normal, (b) viralpneumonia,and (c) COVID-19.

2.2. Experimentalsetup

The inception V3 is introduced as GoogLeNet in 201. There are various Inception modules that make
up the Inception model. The Inception v3 model, which was introduced in 2015, has 42 layers overall
and a reduced mistake rate than its forerunners. The final Inception V3 model shows as Fig 2.

Source: https://iq.opengenus.orgJinception-v3-model-arch ltectu reI

Input: 299x2'99x3. Ou~t:axeX2048

__ .... _ .. __ . _._ ....... .. __ .. _ .... __ .. _ .. __l__ .... __ .. _ .. _ .. .. _._ .... _

- Ca<woIutIon- A"III'ooI- "'uPooi- Conca'- 0._- FuIy-- SoIIma>o

Input:
299Jt299x3

Fig.2. InceptionV3architecture

In their 2015 computer vision research, initially, presented the ResNet model, which made it possible
to train incredibly deep neural networks. ResNet is used to avoid the Vanishing Gradient Problem during
backpropagation (Fig 3). The proposed architecture is represented as in Fig. 4.

5f1"~ tfrlJ,M.JJ
TOlIII,""" 4s-1H.1JJJJ
IS~ lJ1.ym rfrf-lIl.Jf,,J1----------------------

i 1
~!

(IJdljI1I01ri'J

Source: https:llblog.devgenius.io/ITsnet50

Fig.3. ResNet architecture.
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Fig.4.The schematicrepresentationof proposedarchitecture

2.3. Performance metrics

In order to evaluate the performance of different pre-trained models, K-fold cross-validation was
used to verify the training models. The effectiveness of several networks was compared using three
performance measures, including accuracy, sensitivity, and specificity. The predictive formulas were
defined as:

TP
Sensitivity = TP+FN (1)

Specificity = _!!!_
TN+FP

(2)

Accurac = TP + TN
y TP + FP+ TN + FN

(3)

The experiment dataset consist of 3-c1ass classification. Unlike binary classification, the
performance was measured for each individual class. For example, the formulas of class 1 were defined
as:

TP = the number of correctly predicts the positive class 1as positive (4)

TN = TN(classz.z) + TN(classZ.3) + TN(clasS3.Z) + TN(class3,3) (5)

FP = FP(class1,z) + FP(class1.z) (6)

(7)

2.4. Feature extraction using pre-trained models

Many medical data sets have been effectivelyclassified, segmented, and used to detect lesions using
deep learning models. In this study, ResNet50 and InceptionV3 were used to extract the image features.
Fig. 5 shows a lot of versions of the x-rays image with different highlighted features. However, some
images contained weak information (row 2 column 3). When the features were extracted, the main
objective of deep learning is to discover useful representations [25]. For maximizing between the
complete input and the encoder output to learn the useful representations, mutual information was
proposed to address this problem.
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Fig. S. An exampleof the activationmap of imagefeatures

2.5. MutualInformationEvaluation

Information theory can be used to calculate how much information is shared between two variables
in a relationship. When one variable is known, the amount of uncertainty in the other variable can be
lowered. The amount of information that is unclear can be reduced when another variable is known.
When the condition ofY is known, the uncertainty in the state of X is reduced, and the amount of
pertinent information increases. Conditional entropy and probability distributions are typically used to
calculate the classic mutual information. The pointwise mutual information H (Xi Y) pairs estimated
posterior knowledge of the number of each dependent pair. A search technique to choose potential
feature sets X is the mutual information criterion [26]. The complexity typically dictates how each
feature is added or removed based on high or low scores in the search technique. Therefore, the
regression over feature and target classwere established. An image is encoded using a convolution neuron
network until reaching a feature map ofM x M feature vectors corresponding to N input patches. These
vectors were flattened into a single feature vector, x. In this study, the regression mutual information
(RMI) was performed shown as:

RMI(X; Y) = 1- 2:7=1el (8)

(9)

(10)

The correlation between the observed outcomes and the observed predictor values is measured by the
RMI score, which is expressed as a R square (r2). R square, which typically runs from 0 to 1, is the
square of the coefficient of multiple correlation when further regression is incorporated. Then, the new
feature set X was selected from top-S RMI score.
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Fig. 6 show the regression mutual information evaluation process. For example, the fearures of
imagel (see Fig. 3) were extracted and flatted into 56x56 (56x56pixels) and 32 patches. The RMI scores
were computed and selected from top-5. Suppose the feature vector does not support useful
representation. For selecting maximum features, the RMI from the whole input, thus, the feature set
was selected only useful input.

''''

Fig.6. the murual informationevaluationprocess.The localfeatureper imagewasmapand flat in MxMxN size.
Then the RMI scoreswerecomputed.The featuremapswhich havetop-S RMI scoreswereselected.

2.6. Fine-tune and Classification Layer

Training CNN on a small dataset such as medical image often affects the CNN ability to generalize.
Therefore, transfer learning network was used to learn fearures. The final layer (the softmax layer) is
often truncated and replaced with new softmax layers. For instance, a pre-trained network on ImageNet
has a 1000-category softmax layer. Our experiment is performed with three categories of chest x-ray
images. Instead of 1000 categories, the new softmax layer of the network will only have 3. Cross
validation was used to fine-rune the back propagation on the network using the pre-trained weights.
Then, the new features X were parsed through this network to fully connected layer for classification
task.

3. Results and Discussion

The overall objective of this research is to demonstrate the utility of our novel RMI approach for
COVID-l9 diagnosis. Therefore, two sets of experiments were conducted. First, the original models
from the pre-trained were trained to classifyCXR images. Second, the feasibility of applying RMI to
enrich the traditional models was improved diagnosis accuracy.

3.1. Experiment 1: original pre-trained architecture

The input images are fed into the trained ResNet and InceptionV3 to extract image features. Overall
results are summarized in Table 1. By using all the CXR features generated by ResNetl52V2, we obtain
the accuracy of 92.21% (Sensitivity=100% Specificity=90%). With additional features from generated
by Inception V3, we obtain the accuracy of 91.39% (Sensitivity=100% Specificity=82.S0%). As seen,
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ResNetl52V2 performed best on CXR dataset, while InceptionV3 was the lowest performance. Directly
compared to InceptionV3, ResNet152V2's diagnosis produces significantly superior outcomes. The
outcome may be accounted for by the fact that classifiers need to fit data more precisely using
convolutional layers. The ResNet152V2 including RMI obtains the accuracy of 98.77%
(Sensitivity=100% Specificity=98.02%), while InceptionV3 including RMI obtains the accuracy of
93.44% (Sensitivity=92.86% Specificity=93.44%).

Table1. Comparisonof classificationperformances

Original RMI
Mudd ILayu

Accumcy Smsitirity Specficit1 ACCIlTIK] Sttuitivit] Sptcifidty

ResNetl52V2 565 92.21 100 90 98.77 100 98.02

InceptionV3 312 91.39 100 82.5 93.44 92.86 91.09

3.2. Experiment2:applyRMIto enrichthe traditionalmodelsforimproveddiagnosis

In order to study the features that contribute to the goal class, the regression mutual information of
each feature set was calculated, and the source picture for each feature was selected. The RMI scores
were measured through calculating the regression mutual information. The feature set corresponding in
top-5 RMI scores were obtained the final features. Table 2 summarizes the number of trainable features
from different models (original vs. RMI).

Table2. the number of trainablefeaturefromdifferentmodels (originalvs.RMI)

Mudd
The number offeature Acancy

%Reduction
Origiul RM1 Origiul RM1
2,048 245 88.00% 92.21% 98.77%
2,048 320 84.37% 91.39% 93.44%

ResNetl52V2
InceptionV3

Table 2 showed that two original models used 2,048 features, while RMI ResNet152V2 used 245
and RMI InceptionV3 used 320, respectively. The reduction contributes 88% of RMI ResNet152V2
and 84.37% of InceptionV3. In addition, RMI not only reduce trainable feature but also improve the
accuracy of COVID-19 diagnosis.

3.3. COVID-19predictionsandexplanations

The interpretation of features is important not only for the explanation but also for the
confirmation of the diagnosis. The important areas assist physician in using their interpretive abilities to
diagnose patients more quickly and accurately [27]. Based on the locations where the activation maps
overlay the original image, the Significant features can be found.

As seen in Fig. 7, the feature map including RMI generated by ResNet152V2 are more accurate than
InceptionV3. The rationale is that ResNetl52V2 with RMI emphasizes joined features more specifically
than specific components. When highlights regions much more precisely, it provides more human
interpretable explanations.
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(a) (b) (c)

Fig. 7. The regionsof someCOVID-19caseswithin the lungsare localized.(a) OriginalCOVID-19CXR image
(b) criticalregionsfromResNet and (c) criticalregionsfrom InceptionV3

The confusion matrix of the best model performance is shown in Fig. 8. Table 3 demonstrates that
the majority of samples are correctly identified using the original ResNet152V2 with 0.93, 0.92, and
0.92, respectively. For the RMI ResNet152V2 is even slightly higher, yielding 0.94, 0.93, and 0.92,
respectively.

"'"

..
Fig. 8. The confusionmatrix ofRMI ResNet152V2

Table 3. Most samplesare accuratelyclassifiedwith respectto precision,recall,and F1 scores.

Model Precision Recall Fl
Original ResNet152V2

RMI ResNet152V2

0.93

0.94

0.92

0.93

0.92

0.92

The positive predictive value (PPV) was established based on these findings to predict whether
infected individuals would be diagnosed as positive. Only five of the 224 COVID-19 patient samples in
our test set were incorrectly identified as pneumonia, yielding a PPV for COVID-19 cases of 97.76
percent, significantly surpassing a comparable technique [27], [28]. To provide a clearer picture in both
the original and RMI scenario, we also report the class-specificmeasurements in Table 4.
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Table4. Class-specificclassificationresults

Original ResNetl52V2 RMI ResNet152V2
Model

Precision Recall F1 Precision Recall Fl
Normal 0.91 1 0.95 0.90 0.95

Pneumonia 0.90 0.91 0.90 0.90 0.91 0.90

COVID-19 1 0.81 0.90 0.81 0.90

4. Conclusion
This study proposed RMI-DeepCNN to predict COVID-19 based on CXR pictures in this research.

On the basis of CXR pictures, two pre-trained models, ResNet152V2 and InceptionV3, were used to
predict normal, viral pneumonia, and COVID-19. The best model is RMI-ResNet152V2, which achieves
an accuracy of 98.77% (Sensitivity: 100%; Specificity: 98.02%). According to evaluation results, our
method outperforms a recent method in with a PPV of 97.76% and recall of81 %. Based on our results,
RMI -DeepCNN provides the following proof based on the experiments and findings: First, expanding
the feature selection method can still perform better than using only the original features even when a
general strategy does not. Second, since precise diagnosis is crucial, models with many trainable
parameters and a deeper layer of training can produce correct predictions during inference time. The
chosen subset of all features utilizing RMI may be a particular strategy. There are some limitations in
this study. First, CXR images for COVID-19 infection cases is insufficient to avoid the overfitting for
our models. Second, the diagnoses and localization were not compared accuracieswith the radiologists.
In future, we intend to overcome these limitations.
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