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Message from General Chairs

It has been almost two years since 2019 that Coronavirus disease became a severe pandemic.
The end of this unexpected pandemic seems unpredictable. However, the advancement of our research
in computer science must be proceeded with new working environments. Our colleagues from
Thammasat University overcame various pandemic obstacles and devoted a great effort to make JCSSE
2021 a success.

There are 67 submitted papers from Pakistan, Thailand, Vietnam, Singapore, India, Australia,
Japan, Korea, United Kingdom, and China. Only 39 papers were accepted, which is equal to 59%
acceptance rate. JCSSE 2021 is honoured and deeply thankful to have the following distinguished
professors to be our keynote speakers.

1. Professor Dr. Maomi Ueno from The university of electro-communications, Japan to talk
about “Al based e-Testing as a common yardstick for measuring human abilities”.

2. Professor Dr. Siriwan Suebnukarn from Thammasat University, Thailand to talk about
“Intelligent Clinical Training during the COVID-19 Pandemic”.

3. Professor Dr. Pedro Melo-Pinto from The University of Tras-os-Montes e Alto Douro,
Portuguese to talk about “Towards robust Machine Learning models for grape ripeness
assessment”.

Furthermore, the following experts from several organizations kindly helped us arrange the tutorial
sessions, which we feel highly appreciated.

1. Dr. Prachya Boonkwan from National Electronics and Computer Technology Center
(NECTEC), Thailand to lecture on “A Beginner's Tutorial on Thai NLP from Scratch with LST20
Corpus”.

2. Assistant Professor Dr. Worawan Diaz Carballo from Thammasat University, Thailand to
lecture on “High Performance Computing Workshop for the Impatients”.

3. Dr. Thittaporn Ganokratanaa from Applied Computer Science Program, Dept. of
Mathematics, Faculty of Science King Mongkut’s University of Technology Thonburi,
Thailand to lecture on “Deep learning for computer vision applications”.

JSSE 2021 is successful because of the devoting efforts of our colleagues from Thammasat University to
host and organize the conference. In addition, the hard work of conference secretaries, steering
committee, organizing committee, technical committee, reviewers is greatly thankful.

| wish everyone is healthy and our daily lives are back normal soon. Let us enjoy the academic

atmosphere of JCSSE 2021 and forget about COVID-19 for a while.

Chidchanok Lursinsap
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Combination Ultrasound and Mammography for
Breast Cancer Classification using Deep Learning
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Abstract— The most widely used methods for early
detection of breast cancer are Ultrasound and Mammography.
However, single ultrasound or single mammography shows
false classification that causes unnecessary biopsy. Therefore,
the combination approach is proposed to improve breast
cancer classification using the deep learning technique. The
proposed method has been divided into two steps. First, images
are randomly combined using the k-combination method.
Second, deep learning based on MobileNet is used to classify
breast tumors. The result demonstrated that the combination
approach produces a variety of patterns and a large image
dataset and improves the accuracy. In addition, the false
positive tend to reduce by 13% and the false negative tend to
reduce by 14%. It is useful to avoid unnecessary surgery and to
plan aggressive treatment.

Keywords— breast cancer classification; combination imae;
breast ultrasound; breast mammography

[. INTRODUCTION

Breast cancer is the leading cause of death for women.
Early screening and diagnosis have been reduced the death
rate. Therefore, the screening method requires accurate and
reliable tools to distinguish benign and malignant tumors.
Breast ultrasound and Mammography are routine screening
methods. Nevertheless, single ultrasound or single
mammography are not perfect tools because some tumors are
missed particularly in dense breast [1], or distinguishes
between fat tissues, hematoma, fibroadenolipoma, lactating
adenomas, or cyst. Although computer-aided diagnosis in
mammography is more improved, supplemental ultrasound is
also used for the second look or follows up the result when
the suspicious mammography is found. Many studies
reported that a combination of mammography and breast
ultrasound more efficiently detected breast cancer than single
mammography [2, 3, 4, 5, 6]. In addition, these studies
demonstrated that the high accuracy, low false-positive (FP)
rate, and false-negative (FN) rate were reduced by using the
combination method.

In the last decade, Computer Aid Diagnosis (CAD) has
been developed for breast cancer detection and classification
to improve sensitivity and specificity [7]. Many techniques
such as linear discriminant analysis (LDA), support vector
machine (SVM) and artificial neural network (ANN) [8, 9,
10] have been proposed for breast lesions detection and
classification. In recent years, deep learning is popularly
used to analyze the medical images. The interesting survey
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[11] reviewed over 300 contributions and reported effective
medical image analysis using a deep learning approach. The
major challenge is designing such systems to extract of
features from the images by computer instead of a human.
The many studies in the medical image using deep learning
is rapidly growing every year [12, 13, 14]. These studies
showed that the convolutional neural networks (CNNs)
technique is effectively used to extract the image features,
especially in breast cancer classification. However,
according to these surveys, the combination of ultrasound
and mammography images was not available.

This study aims to combine ultrasound and
mammography images for breast cancer classification using
deep learning based on MobileNet architecture. The
proposed method focuses to improve the performance of
breast cancer classification when compared with single
ultrasound and single mammography.

II. RELATED WORK

A. Breast cancer screening

The first breast cancer screening is self-examination or
physical examination. When an abnormal breast is
discovered by physical examination, it is usually 80% benign
in cases. The physical examination performance is efficient
screening. However, no studies prove physical examination
has reduced mortality rates from breast cancer because only
28% of the cancer was detected. The other screening is breast
ultrasound that used for the second look or follows up the
result when the suspicious mammography is found. Breast
ultrasound is useful in very small lesions and hard to find
from mammography. Previous research [15] concluded that
cancers detected in ultrasound were similar in size and stage
to detect in mammography and would improve survival rate.
Although breast ultrasound is not part of the National
Comprehensive Cancer Network (NCCN) or the American
Cancer Society (ACS) for the first screening, early detected
breast mass from ultrasound screening could reduce the
mortality rate [16, 17, 18, 19]. The women in average to
high-risk breast cancer assessment was recommended to
exam the mammography. However, some studies discussed
the sensitivity as low as 30-50% [20] because mammography
false classification in small mass, dense breast, hematoma, or
fibroademolipoma. Therefore, ultrasound supplemental
mammography has been used for the women that has dense
breast and has suspicious mass in mammography. Adjunctive



ultrasound screening tests may detect cancer in
approximately 47% of dense breasts [21]. The effective
supplemental ultrasound was reported in previous studies
[22, 23, 24]. These findings found that supplemental
ultrasound increased the detection rate of the node-negative
invasive dense breasts. The evidence from prior studies [25,
26, 27] reported that a combination of ultrasound and
mammography might still identify the vast majority of
cancer when they are node-negative.

B. Screening Performance

The breast image interpretation is depending on the skill
and experience of the radiologist. Performance comparison
in sensitivity, specificity, or overall accuracy were reported
in 75.3%, 96.8%, and 96.6% in single ultrasound; 77.6%,
98.8%, and 98.6% in single mammogram; and higher
sensitivity 97% in combination of ultrasound and
mammography [15]. Other report [2] showed 52%, and 84%
in single mammogram; and 76%, and 91% in combination.
Although these finding reported that ultrasound supplemental
with mammography could increase cancer detection and
improve performance, false positive and false negative also
appeared. It leads to extra unnecessary exams and
unnecessary biopsy.

C. Improved Breast Image Analysis using Deep Learning

Even well-trained experts may have high human errors;
therefore, Computer Aid Diagnosis (CAD) has been
developed for breast cancer detection and classification.
Few studies in single ultrasound [28, 29, 30] demonstrated
that the efficient CAD in ultrasound with improving
accuracy and reducing the number of unnecessary biopsy
are performed in CAD. Deep learning is the efficient
technique to analyze medical image. The comparison study
[31] shows performance in GD, GDM, and AGD algorithms
are 76.9%, 46.2%, and 84.6% accuracies. Their concluded
that AGD achieves high accuracy but suffer from time
complexity. Convolutional neural network (CNNs) is
popularly used in deep learning. The models are compared
[32] in LeNet, U-Net, and FCN-AlexNet when combining
two ultrasound modes. The results showed the true positive
fraction (TPF) in 0.89, 0.91, and 0.98 respectively, but they
concluded that the training dataset was insufficient.
Unsupervised learning based on a neural network classifier
[33] was proposed to solve the low resolution and low
contrast ultrasound image. It showed 95.86% accuracy.
Deep polynomial network [34] was applied to extract the
global texture feature and improved 92.40% accuracy.
Although the automated detection and classification in
mammography have been improved, some limitations also
present in mammography. Mass detection algorithms have
proposed prior to classification [35, 36]. These studies
reported the effective reduction of false-positive regions and
high true positive prediction. learned feature hierarchy
method was proposed to segmentation using deep learning
instead of handcrafted feature from mammography image
[37]. They demonstrated that the deep learned feature strong
positive than manual. Combing CNN and SVM proposed in
[38] achieved 98.44% compared with the baseline
(ConvNets). Integrated methodology for detecting,
segmenting, and classifying breast mass [39] achieved 98%
sensitivity and 70% specificity. In other studies, two
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mammogram datasets were compared [40]. The results
showed 100% accuracy for training, while the testing
showed only 87% accuracy. A well-known fully complex-
valued relaxation network was proposed [41].
It significantly improved the performance in 99% accuracy,
98% sensitivity, and 100% specificity.

III. MATERIAL AND METHOD

A. Material

The datasets consist of 381 breast ultrasound and 316
mammography images. The ultrasound images are provided
by Biomedical Engineering Unit of Sirindhorn International
Institute of Technology, Thailand [42]. The mammography
images available on MIAS Mini Mammographic Database
[43].

B. Method

The proposed method was divided into three steps: First,
images were combined and randomly selected using the k-
combination method. Second, deep learning based on
MobileNet was used to extract the image features. Finally,
the breast mass was classified by softmax layer.

1) Combination using the k-combination and randomly
selection method

Most of the time, data related issues are the main
reason why machine learning cannot be accomplished.
Because of the images of the same person were not
available, therefore, this study proposed combination
method. However, the images were combined in the same
class. It means that benign ultrasound images were
combined with only benign mammography images. In this
step, ultrasound and mammography images were prepared.
First, each image was contained in their class folder (Benign
and Malignant). Second, the image numbers were defined
and used to combine in the same class. Third, all pair
images were resized in 320x270 pixels. In mathematics, a
combination is a selection of items from a collection, such
that the order of selection does not matter. For example,
given three objects, say an object 1, an object 2 and an
object 3, there are three combinations of two that can be
drawn from this set: an object 1 and object 2; an object 1
and object 3; or an object 2 and an object 3 and so on. More
formally, a k-combination of a set S is a subset of k distinct
elements of S.

In experiment, The datasets consist of 381 breast
ultrasound and 316 mammography images. Then, the
combination images consist of 6,144 benign and 9,620
malignant. The combination using k-combinations method
shows in “fig 1”. The dataset was divided into 90% for
training and 10% for testing by random selection. Table I
shows the number of training and testing dataset.

TABLE L THE SIZE OF TRAINING AND TESTING
Dataset Total Training Testing
Single US 381 250 131
Single Mammography 316 194 22
Combination image 15,764 14,187 1,577

Downloaded on July 28,2021 at 09:36:38 UTC from IEEE Xplore. Restrictions apply.



Bem gnmass

,

)

|

|

|

|

|

|

|

I

|

|

[ z
| o
! g
| v
| <
|

|

I

[

I

|

]

\

’

!

I 1
| |
| I
| I
| i
| |
| I
| |
| & i
| = |
| & !
| = |
| e v i
| ? falignant -Mammogramé#n  Malignant - Combing#n :
! - -

| I
| i
| I
| I
| I
| i
| I
| !
A%

N

Figure 1 The combination using k-combinations method

M
train accuracy
| final_repult
cross_entropy | |
dim final_training_ops Type / Stride Filter Shape Input Size
Conv /52 3x3x3x32 224 x 224 x 3
Conv dw /sl 3 x 3 x 32dw 112 x 112 x 32
s 2 Conv /sl 1x1x32x64 112 x 112 x 32
Epus] Conv dw /52 3 %3 % bddw 112 x 112 x 64
Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw /sl 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1x1x128 x 128 56 x 56 = 128
pecil Conv dw /52 3 x 3 x 128 dw 56 x 56 x 128
MobilenetV1 Conv /sl 1 x 1 x 128 x 256 28 x 28
Conv dw /sl 3 x 3 x 256 dw 28 x 28
Conv /sl 1 x 1 x 256 x 256 28 x 28
Conv dw /52 3 x 3 = 256 dw 28 x 28
& Conv /sl 1x1 x 256 x 512 14 x
R __Convdw /sl | 3x3x512dw 14 x
"% Conv /sl 1x1x512x512 | 14x
Conv dw /52 3 x 3 x 512dw 14 < 14
Conv /sl 11 x 512 x 1024 TxTx
Conv dw /52 3 x 3 x 1024 dw TxTx
Conv /sl 1x1x1024x1024 | TxT7Tx
Avg Pool /sl Pool 7 x 7 Tl
FC /sl 1024 = 1000 1x1x 1024
Softmax /sl Classifier 1 > 1 x 1000

Figure 2 MobileNet architecture
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2) Deep MobileNet architecture

Deep learning in a medical image has progressed in
recent years. Many techniques have become more powerful
and higher accuracy. To achieve higher accuracies, complex
network, large model size, and many times to training are
necessary [14].
MobileNet architecture, which is very small and low latency
models, was used because the retrain technique based on
transfer learning is faster than the fully training model.
Figure 2 shows the MobileNet architecture. All layers are
followed by a batch-norm and ReLU. The final layer is fully
connected layer. Softmax layer is the classification layer.
The re-trained MobileNet model removes the old top layer,
then, new dataset has been trained to classify the target
class. Those predictions are then compared against the
actual labels to update the final layer's weights through the
back-propagation process.

3) Breast Cancer classification

In the practical experiment, our methodology is able
to improve correctly classify the breast cancer lesions in
benign or malignant using combined ultrasound and
mammography image. The new random images were
created and used to evaluate the prediction performance
using confusion matrix that represents the correctly
classified instances and report in overall accuracy,
specificity, and sensitivity. In the practical experiment, our
method is able to improve the breast cancer classification.
The confusion matrix was used to evaluate the model
performance in overall accuracy, specificity, and sensitivity.

IV. RESULT

A. Image Combination

The problem of data scarcity is very important since
data are at the core of any machine learning. The
combination method produces the augmented images (6,144
benign and 9,620 malignant). The size of dataset is often
responsible for poor performances. The combination method
is useful to improve performance and outcomes of machine
learning models by forming new and different examples to
train datasets. If dataset in a machine learning model is rich
and sufficient, the model performs better and more accurate.

B. Classification performance

In this experiment, proposed method was compared
with single ultrasound and mammography. The dataset was
divided into 90% training and 10% testing. The model
architecture is very small, low latency, and high accuracy.
The significant problems in breast cancer diagnosis are false
negative and false positive. The false negative affects with
the patients who lose the chance to early treatment. The
false positive prediction develops unnecessary surgery such
as biopsy. Table II shows the model performance.

The results demonstrate that ultrasound shows a high
specificity of 98.15%, while shows low sensitivity of
96.43%. The false negative is 3.57%, and the false positive
is 1.85%. The mammography shows low specificity of
88.24%, while show a high sensitivity of 89.80%. The false
negative is 10.2%, and the false positive is 11.76%. The
combination method improves 100% accuracy and reduces
all false predictions. This approach reduces about 14% false

negative. In addition, the false positive is reduced about
13%. It means that 13% of patients could avoid unnecessary
surgery such as biopsy.

TABLE II. CLASSIFICATION PERFORMANCE
Accuracy Sensitivity Specificity
Ultrasound 97.27 96.43 98.15
Mammography 89 89.80 88.24
Combine 100 100 100

V. DISCUSSION

A. Combined image approach

The breast image interpretation is depending on the skill
and experience of the radiologist. Even well-trained experts
may have high human errors; therefore, computer-aided
diagnosis (CAD) is performed to help the radiologists in
breast cancer detection and classification. The variety
pattern and large image dataset can be successful to learn all
possible patterns, but a common problem in the medical
images is the insufficient training dataset. Combination
image approach could solve insufficient training dataset
because it produces variety pair of images.

B. Deep Learning base on MobileNet

Deep learning technique is popular used in breast
cancer classification. According to our surveys, no previous
studies proposed a combination of ultrasound and
mammography. Therefore, only single ultrasound and single
mammography could be compared. Many studies in breast
cancer classification, convolutional neural network (CNN)
was used. It is time consuming. Our experiment used deep
learning based on MobileNet that runs quickly with high
accuracy in a limited environment device, limited
computation power, and limited space.

C. Apply in Breast Cancer Prediction

Early screening and diagnosis have been reduced the
death rate. Therefore, the screening method requires
accurate and reliable tools to distinguish benign and
malignant tumors. The significant problems, the false-
negative affected with the patients who lose the chance to
early treatment. The false-positive develops unnecessary
surgery such as biopsy. The combination approach reduces
13% false positive which avoids unnecessary surgery and
reduces false negative by 14% which immediately curable
and plans for less aggressive treatment. In experiments, the
combination approach tends to more efficient in breast
cancer screening.

VI. CONCLUSION

The combination image approach with deep learning for
breast cancer classification achieves high accuracy and
reduces false prediction. The results demonstrate that
combining ultrasound and mammography images is more
efficient in breast cancer screening. In future work, other
images related to breast cancer such as the pathological
image from the biopsy are interesting to combine for
modeling.
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